Higher Levels of Electrification for Use in the 2022-23 TPP

CAISO Stakeholder Meeting July 6, 2022

California Public Utilities Commission

Purpose

- To move toward planning for a higher electrification future and identifying any incremental infrastructure needs, given existing and potentially new policy drivers regarding high electrification:
 - Assessing the transmission system and identifying potential transmission investments needed;
 - Investigating local capacity issues that may be significant in a high electrification future, especially in constrained areas like the Los Angeles (LA) Basin; and
 - Assessing any potential land-use constraints associated with the high electrification resource/transmission buildout, particularly through the busbar mapping process.

State's Electrification Goals

- Considering the proposed CARB electrification regulations, the expectation is the 2022 IEPR will have higher level of load compared to the original 2021 IEPR.
 - Proposed CARB electrification regulation: Advanced Clean Cars II (ACCII) and Advanced Clean Fleets (ACF).
- The combined lead time associated with CEC, CPUC, and CAISO planning processes and the building of the generation and transmission infrastructure mean that planning for the high electrification future will need to begin now.
- Through different IRP stakeholder processes, many parties requested to move towards a higher level of electrification.
- IOUs requested to use higher level of electrification for their Grid Needs Assessments filings.

Other Procedural Background

- The 2021 PSP utilized a managed mid-demand paired with high electric vehicle (EV) demand forecast from CEC's 2020 IEPR.
- The 2021 PSP Decision also delegated to Commission staff to explore with CEC and CAISO staff the development of a policy-driven sensitivity portfolio designed around a lower GHG emissions limit and the use of "high electrification" demand assumptions in the 2022-2023 TPP.
- As part of 2022 IRP Filing Requirements, LSEs are instructed to describe and provide qualitative and quantitative information on what additional resource planning and procurement they would do under the high electrification scenario.

IRP Stakeholders Requested to Have Higher Level of Electrification Assumptions in Planning

- 2021 PSP development process:
 - The majority of parties supported adjusting the load forecast assumptions to include higher load, particularly related to EV adoption and high electrification more broadly.
 - Many parties, including ACP-CA, CalCCA, and CEJA, supported including even higher load than the 2021 IEPR High EV forecast, referring to the 2035 zeroemissions vehicle (ZEV) goal, carbon neutrality goals, and numerous executive orders of the Governor and previous Governor.
 - PG&E stated that all of the IEPR scenarios materially underestimate the likely EV load by 2030, and UCS recommended including 7 million ZEVs by 2030.
 - SDG&E pointed out that this approach would be consistent with action in the distribution resource plans.

IRP Stakeholders Request to Have Higher Level of Electrification Assumptions in Planning (Cont.)

- In response to an April 20, 2022, Ruling that proposed to use CEC's 2021 IEPR mid case as the energy forecast for LSEs to plan for their 2022 IRPs, some parties asked to have LSEs to plan for higher load forecast.
 - ACP-CA commented that this IRP cycle should account for California's aggressive electrification goals.
 - PG&E recommended having the LSEs plan for the Inter-Agency High Electrification scenario.
 - SCE noted that there is not enough time to consider higher electrification assumptions in this IRP cycle, but pointed out that their own internal forecasts expect higher electrification load and therefore recommended that this assumption should be adjusted in future cycles.

IOUs' GNA and the Request for Higher Transportation Electrification Load Forecast

- It is important to use consistent load input in IRP and Distribution Planning Process(DPP), as appropriate.
- Each year the IOUs' Grid Needs Assessments (GNAs) filings identify distribution grid investment needs based on the most recently adopted IEPR datasets (e.g., 2022 GNAs based on 2020 IEPR).
- IOUs have expressed concern that the original 2021 IEPR datasets are already outdated because they don't reflect the most recent CARB projections.
 - IOUs jointly proposed to CPUC Energy Division to insert transportation electrification (TE) loads from Inter-Agency High Electrification scenario into the 2021 IEPR mid-case for later years (2030-2032) and insert TE loads from the 2021 IEPR high case for early years (2023-2029).

Higher Level of Electrification for the 2022-23 TPP Base Case

- In recognition of the state's aggressive electrification goals and the development of implementing programs and mandates, and the importance of assessing these effects as an input into infrastructure planning, CPUC requested to use higher level of electrification for the 2022-23 TPP base case analysis.
 - CPUC, CEC, and CAISO agreed to do so, concluding that reflecting higher levels of transportation electrification was prudent given recent policy and market drivers that are increasingly favorable towards electrification.
 - CEC, consequently, adopted both the Inter-Agency High Electrification scenario and the Additional Transportation Electrification scenario at the May 24, 2022, business meeting as part of the 2021 IEPR.

2022-2023 TPP High Electrification Policy-Driven Sensitivity Portfolio — RESOLVE Results and Busbar Mapping

July 6, 2022 CAISO Stakeholder Meeting

Energy Division Staff Presentation

California Public Utilities Commission

RESOLVE Updates for Sensitivity Portfolio

- RESOLVE is a capacity expansion model, which co-optimizes investment and dispatch over a multi-year horizon in order to identify least-cost portfolios for meeting specified GHG targets and other policy goals.
- Utilized in CPUC's IRP to develop optimal resource portfolio covering the CAISO balancing area.
- Staff implemented three key updates to RESOLVE from the version used for IRP's PSP base case portfolio, transmitted to the CAISO in February.

Update Category	Key Changes
Resource Costs and Potential	 Updated resource costs to NREL 2021 ATB and Lazard LCOS v7.0
Grid Planning Scenario	 Updated the load in RESOLVE to the CEC's 2021 IEPR with the additional Transportation Electrification scenario to capture a high electrification future
Transmission Deliverability	 Updates to transmission deliverability – resource mappings, existing transmission deliverability capacity, transmission upgrades using the updated 2021 CAISO transmission whitepaper and the results of the 2021-2022 TPP

RESOLVE Results – Comparison to 38 MMT PSP base case portfolio

- Sensitivity portfolio key attributes that increase resource build
 - Lower GHG target
- Jrce build wer GHG target 30 MMT by 2030 statewide (25 MMT by • 30 MMT by 2030 2035) **Cumulative Selected**
 - Higher Load
 - 2021 IEPR with Additional Transportation Electrification scenario •
 - Beyond 10-year focus
 - Study year is 2035

RESOLVE Results – Summary of selected resources

• Selected new resources in portfolio at key years:

Resource Type	2026 (MW)	2028 (MW)	2030 (MW)	2032 (MW)	2035 (MW)
Biomass	107	134	134	134	134
Geothermal	942	1,152	1,152	1,152	1,786
Wind	3,797	3,797	3,797	3,797	3,797
OOS Wind New Tx	0	4,828	4,828	4,828	4,828
Offshore Wind	120	195	200	3,100	4,707
Utility-Scale Solar	11,000	11,539	25,414	28,779	40,879
Battery Storage	11,771	11,539	15,613	22,437	28,402
Long-duration Storage	196	1,000	1,000	1,000	2,000
Shed Demand Response	1,115	1,115	1,115	1,115	1,115
Total	29,049	35,633	53,254	63,898	87,650

- Two manual adjustments to the portfolio built by RESOLVE
 - Removed the 256 MW of new gas
 - Added 600 MW of geothermal (amount is beyond what is needed to replace the gas)
- Purpose: to study in the TPP the more complex transmission challenges of interconnecting additional geothermal resources.

Busbar Mapping Overview

- **Resource to Busbar Mapping** ("busbar mapping"): The process for translating geographically coarse portfolios developed through IRP to individual substations for use in the CAISO's annual Transmission Planning Process (TPP).
 - The CPUC typically transmits multiple distinct portfolios developed in the IRP process:
 - Reliability and Policy-Driven Base Case portfolio -> the 38 MMT portfolio transmitted back in February
 - Policy-Driven Sensitivity portfolio(s) -> the 30 MMT high electrification sensitivity portfolio, presented here
 - Joint effort through a CPUC, CEC, and CAISO staff working group
 - Uses a stakeholder vetted methodology, described in detail in most recent <u>Methodology Document</u>

Inputs: Portfolio developed from RESOLVE results MW by **Resource Type** 2032 Biomass 134 Geothermal 1,160 3,531 Wind Wind OOS New Tx 1,500 1.708 Offshore Wind Utility-Scale Solar 17,506 **Battery Storage** 13,571 Long-duration Storage 1,000 Shed Demand Response 441 Total 40,551 Imperial Solar

RESOLVE Resource Name	2032 Total (MW)
Greater_LA_Solar	1
Northern_California_Solar	-
Southern_PGAE_Solar	1,238
Fehachapi_Solar	2,969
Greater_Kramer_Solar	3,166
Southern_NV_Eldorado_Solar	7,382
Riverside_Solar	4,001
Arizona_Solar	-
www.wiel.Celew	

Mapping Results of the portfolio for the

2022-23 TPP Base Case

Output: Substation-level mapping

229 - 500

501 - 1700

Busbar Mapping Overview

- Busbar Mapping's goal is to balance mapped resources alignment with the following criteria:
 - Distance to transmission of appropriate voltage i.
 - Transmission capability limits, and cost-effective transmission upgrades ii.
 - iii. Land use and environmental constraints
 - Commercial development interest iv.
 - Consistency with prior year's TPP base case mapping ν.
- Additional criteria for battery storage (i.e., prioritizing DACs, Non-attainment areas, thermal retirements)
 - Also prioritize co-locating storage with solar (particularly EODS) to approximate transmission needs of hybrids
- CAISO staff produce transmission capability limits and upgrade cost estimates and provide feedback on transmission implications of mapping.
- CEC staff compile land-use and environmental data and implement the screens to assess mapping's potential environmental impact.

Table Right: Example	Area	Substation	Voltage	Wind Sourœ	FCDS (MW)	EODS (MW)	Round 1 Total (MW)	1. Distance to Trans. of Appropriate Voltage	2. Transmission Capability Limit	3a. Available Land Area	3b. Environmental Impacts	4. Commercial Interest	5. Prior Base Case
of busbar mapping	Northern PG&E	Bridgeville	115	In-State	-	34	34	1	1	2	2	3	1
criteria analysis results	Northern PG&E	Glenn	230	In-State	-	153	153	1	1	1	1	3	3
for Northern CA wind	Northern PG&E	Kelso	230	In-State	-	50	50	1	1	1	1	1	1
	Northern PG&E	Pit1	230	In-State	-	200	200	3	1	3	2	3	1
Utilities Commission	Table Legend:		Level-3 N	lon-comp	liance	3	L	evel-2 Non-co	ompliance	2	Level-1	.Compliance	1

Criteria 2: Transmission Capability

- Criteria 2 analysis relies on information developed by the <u>CAISO in the 2021 Transmission Capability Estimates White</u> <u>Paper:</u>
 - Transmission constraint information:
 - Available transmission capacity
 - Known upgrades estimated costs and transmission capacity
 - On-peak (for FCDS resources) and Off-peak (for FCDS and EODS resources) output factors that are resource and region specific
- Staff calculate the transmission utilization of mapped resources across all constraints.
- If mapping results exceeds transmission capability for constraints, staff determine:
 - Which white papers upgrades would alleviate exceedances,
 - The upgrades' cost-effectiveness given resources mapped, size of upgrade, and costs; and,
 - Alternative mapping locations with transmission availability which still align with the other criteria.

Table of constraint information (above) and FCDS output factors (below) are inputs for mapping taken from the CAISO White Paper

FCDS Output Factors							
Deserves trues		HSN		SSN			
Resource type	SDG&E	SCE	PG&E	SDG&E	SCE	PG&E	
Solar	3.00%	10.60%	10.00%	40.20%	42.70%	55.60%	
Wind	33.70%	55.70%	66.50%	11.20%	20.80%	16.30%	
Non- Intermittent resources	100%						
Energy storage	100% if duration is \geq 4-hour or ISC*(duration/4) if duration						
Hybrid	The lesser of 100% of combined ISC or (100% of 4-hour storage capacity plus study amount of paired resource)/ISC						

Criteria 3: Land-use and Environmental Screens

- Criteria 3 analysis, led by CEC staff, uses an array of land-use and environmental data sets, shown in table below
 - Utilizes geographic maps of resource potentials filtered to economical distances from existing and proposed substation.
 - Overlay environmental and land use information to identify potential implications.
- Criteria 3 screening is split into two analyses:
 - Criteria 3a: focuses on available land area and overall (high/low) potential environmental/land-use implications.
 - Criteria 3b: assesses the implications of individual environmental data sets.

Environmental and Land Use Data Sets Utilized in Busbar Mapping

- Terrestrial Landscape Intactness (California Energy Commission and Conservation Biology Institute, 2016)
- Areas of Conservation Emphasis, version 3.0 (ACE III) (California Department of Fish and Wildlife, 2018)
 - i. Terrestrial Connectivity
 - ii. Biodiversity
 - iii. Rarity
 - iv. Native species
 - v. Irreplaceability
- California Agricultural Value (California Energy Commission and Conservation Biology Institute, 2018)
- Natural Landscape Blocks
- Wildfire Threat
- Western Electricity Coordinating Council (WECC) Environmental Risk Dataset (utilized for resources mapped outside of California)

Criteria 3: Land-use and Environmental Screens

- Criteria 3a Implementation (example right)
 - Uses CEC staff developed screen weighs multiple datasets to identify whether resource areas have higher or lower potential land-use/environmental implications.
 - CEC assesses available low and high areas within fixed radii of substations. Larger radii affects Criteria 1.
- Criteria 3b implementation (example below)
 - CEC staff overlay each of the environmental data sets individual
 - Assesses what percentage of resource potential area is in each data set's high impacts
- Analysis is tailored per resource type
 - With fixed resource locations, analysis is focused on resources potential areas

(Above) Criteria 3a analysis: Kramer substation with 10- and 20-mile radii

(Below) Criteria 3b analysis: Kramer – 10-mile radius

					Important Bird	Important		
Intactness	Biodiversity	Connectivity	Rarity	Native Species	Areas (IBA)	habitat	Wildfire threat	Irreplaceability
39%	85%	13%	92%	68%	27%	20%	0%	0%

Criteria 4: Commercial Development Interest

- Criteria 4 analysis utilizes summaries of potential resource development at individual substations.
- Relies predominately on CAISO's Public Interconnection Queue
- Also includes data from multiple other sources
 - Larger projects identified in the PGE, SCE, and SDGE WDT (WDAT) queues
 - Queues for other BAAs outside the CAISO specifically the IID and NVEP for geothermal projects.
 - Known projects in planning/development currently not in queue (OOS Wind and LDES in particular)
- Prioritizing mapping at substations with projects further along in the interconnection process rough approximation for higher confidence in potential development.

Chart summarizing resources in the CAISO interconnection queue by resource type and study status completed.

Busbar Mapping Results

- Summary table (right) of the completed busbar mapping for the 30 MMT high electrification sensitivity portfolio in 2035
- Full results can be found on the <u>CPUC Website</u>
 - Includes Dashboard workbook which:
 - Has all mapped resources by substation
 - Shows the detailed analysis for each criteria
- Key takeaways
 - Unprecedented number of resources mapped
 - ~87 GW in this sensitivity vs ~40 GW in base case vs ~28 GW in 21-22 TPP base case
 - Co-location of solar and battery storage
 - Stand-alone batteries: 6.4 GW, predominately in LA basin, San Diego, and Bay Area
 - Co-located: 22 GW batteries co-located at substations with 40.3 GW of solar (11.7 GW assigned FCDS, 28.6 GW assigned off-peak deliverability only)

		5000	5000	TOTAL
RESOLVE Resource Name	Resource Type	FCDS	EODS	TOTAL
Solano_Geothermal	Geothermal	/9		79
Inyokern_North_Kramer_Geothermal	Geothermal	48		48
Southern_Nevada_Geothermal	Geothermal	440		440
Northern_Nevada_Geothermal	Geothermal	327		327
Greater_Imperial_Geothermal	Geothermal	900		900
Greater_LA_Solar	Solar	75	2,128	2,203
Northern_California_Solar	Solar	344	1,512	1,856
Southern_PGAE_Solar	Solar	3,535	7,439	10,974
Tehachapi_Solar	Solar	3,031	4,952	7,983
Greater_Kramer_Solar	Solar	770	2,411	3,181
Southern_NV_Eldorado_Solar	Solar	1,320	4,196	5,516
Riverside_Solar	Solar	2,067	3 <i>,</i> 690	5,757
Arizona_Solar	Solar	800	1,831	2,631
Imperial_Solar	Solar	125	528	653
Northern_California_Wind	Wind	305	351	656
Solano Wind	Wind	321	196	517
Kern Greater Carrizo Wind	Wind	60	-	60
Carrizo Wind	Wind	287	-	287
Central Valley North Los Banos Wind	Wind	186	-	186
North Victor Wind	Wind	100	-	100
Tehachani Wind	Wind	281	-	281
Southern Nevada Wind	Wind	442	-	442
Riverside Palm Springs Wind	Wind	116	-	116
Baia California Wind	Wind	600		600
		1 500		1 500
daho Wind	OOS Wind	1,500		1,500
Now Movice Wind	OOS Wind	1,000		2,000
W/ Ext Tx Wind		2,520	-	2,520
www.ext_tx_vvinu	OUS WIND	1 497	-	1 607
	Offshore wind	1,487	120	1,607
Worro_Bay_Offshore_Wind	Offshore wind	3,100	-	3,100
Renewable Resource Total		26,842	29,353	56,196
Greater_LA_Li_Battery	Li_Battery	5,139	-	5,139
Northern_California_Li_Battery	Li_Battery	2,198	-	2,198
Southern_PGAE_Li_Battery	Li_Battery	6,074	-	6,074
Tehachapi_Li_Battery	Li_Battery	3,884	-	3,884
Greater_Kramer_Li_Battery	Li_Battery	2,224	-	2,224
Southern_NV_Eldorado_Li_Battery	Li_Battery	2,711	-	2,711
Riverside_Li_Battery	Li_Battery	3,305	-	3,305
Arizona_Li_Battery	Li_Battery	1,229	-	1,229
mperial_Li_Battery	Li_Battery	250	-	250
San_Diego_Li_Battery	Li_Battery	1,389	-	1,389
LI_Battery Tota		28,402		28,402
SPGE_LDES	LDES	300	-	300
Tehachapi LDES	LDES	500	-	500
Riverside_East_Pumped_Storage	LDES	700	-	700
San_Diego_Pumped_Storage	LDES	500	-	500
LDES Tota		2,000		2,000
Storage Total		30,402		30,402
Total Storage+Resources		57,244	29,353	86,598

19

Busbar Mapping Results

- Key takeaways (cont'd)
 - Transmission analysis points to need for significant number of transmission upgrades
 - Exceedances in ~28 of the white paper transmission constraints
 - In several constraints, transmission capability needs exceed even the capacity of the identified upgrade
 - Environmental/land use analysis show limitations to buildout
 - In several areas (e.g., Kramer, Colorado River), the number of resources mapped exceeded the low potential impacts land areas
 - Implies resources will need to be sited further out from the substation to avoid areas of higher potential environmental impacts
 - Able to map in close alignment with commercial interest
 - With Cluster 14, the CAISO queue has large amount of commercial interest
 - Magnitude of resources mapped resulted in significant mapping to locations with commercial interest, whose interconnection has not yet been studied.
 - Limited commercial interest for some long-lead time resources; reliant on areas outside the CAISO for particularly geothermal resources.

RESOLVE Resource Name	Resource Type	FCDS	EODS	TOTAL
Solano_Geothermal	Geothermal	79		79
inyokern_North_Kramer_Geothermal	Geothermal	48		48
Southern_Nevada_Geothermal	Geothermal	440		440
Northern_Nevada_Geothermal	Geothermal	327		327
Greater_Imperial_Geothermal	Geothermal	900		900
Greater_LA_Solar	Solar	75	2,128	2,203
Northern_California_Solar	Solar	344	1,512	1,856
Southern_PGAE_Solar	Solar	3,535	7,439	10,974
Tehachapi_Solar	Solar	3,031	4,952	7,983
Greater_Kramer_Solar	Solar	770	2,411	3,181
Southern_NV_Eldorado_Solar	Solar	1,320	4,196	5,516
Riverside_Solar	Solar	2,067	3,690	5,757
Arizona_Solar	Solar	800	1,831	2,631
Imperial_Solar	Solar	125	528	653
Northern_California_Wind	Wind	305	351	656
Solano_Wind	Wind	321	196	517
Kern_Greater_Carrizo_Wind	Wind	60	-	60
Carrizo Wind	Wind	287	-	287
Central Valley North Los Banos Wind	Wind	186	-	186
North Victor Wind	Wind	100	-	100
 Tehachapi Wind	Wind	281	-	281
Southern Nevada Wind	Wind	442	-	442
Riverside Palm Springs Wind	Wind	116	-	116
Baja California Wind	Wind	600	-	600
Wyoming Wind	OOS Wind	1,500	-	1,500
daho Wind	OOS Wind	1,000	-	1,000
New Mexico Wind	OOS Wind	2,328	-	2,328
SW Ext Tx Wind	OOS Wind	610	-	610
Humboldt Bay Offshore Wind	Offshore Wind	1,487	120	1,607
Morro Bay Offshore Wind	Offshore Wind	3,100	-	3,100
Renewable Resource Tota		26,842	29,353	56,196
Greater LA Li Battery	Li Battery	5,139	-	5,139
Northern California Li Battery	Li Battery	2.198	-	2.198
Southern PGAE Li Battery	Li Battery	6.074	-	6.074
Tehachapi Li Battery	Li Battery	3.884	-	3.884
Greater Kramer Li Battery	Li Battery	2.224	-	2.224
Southern NV Eldorado Li Batterv	Li Battery	2.711	-	2.711
Riverside Li Batterv	Li Battery	3.305	-	3,305
Arizona Li Battery	Li Battery	1.229	-	1.229
Imperial Li Battery	Li Battery	250	-	250
San Diego Li Battery	Li Battery	1.389	-	1.389
LI Battery Tota		28.402	1	28,402
SPGE LDES		300	-	300
Tehachani I DFS	LD ES	500	-	500
Riverside East Pumped Storage	IDFS	700	-	700
San Diego Pumped Storage	LDES	500	-	500
IDFS Tota	1.5.5	2 000		2 000
Storage Total		30 402		30 402
		57 2/4	20 252	86 509
Total storage incloud ces		57,244	29,995	00,530

20

Busbar Mapping Results – Supplemental

- Larger view of 2035 summary table of mapped resources by area.
- Full Mapping results on <u>CPUC Website</u>

RESOLVE Resource Name	Resource Type	FCDS	EODS	TOTAL
Greater_LA_Li_Battery	Li_Battery	5,139	-	5,139
Northern_California_Li_Battery	Li_Battery	2,198	-	2,198
Southern_PGAE_Li_Battery	Li_Battery	6,074	-	6,074
Tehachapi_Li_Battery	Li_Battery	3,884	-	3,884
Greater_Kramer_Li_Battery	Li_Battery	2,224	-	2,224
Southern_NV_Eldorado_Li_Battery	Li_Battery	2,711	-	2,711
Riverside_Li_Battery	Li_Battery	3,305	-	3,305
Arizona_Li_Battery	Li_Battery	1,229	-	1,229
Imperial_Li_Battery	Li_Battery	250	-	250
San_Diego_Li_Battery	Li_Battery	1,389	-	1,389
LI_Battery Tota	l	28,402		28,402
SPGE_LDES	LDES	300	-	300
Tehachapi_LDES	LDES	500	-	500
Riverside_East_Pumped_Storage	LDES	700	-	700
San_Diego_Pumped_Storage	LDES	500	-	500
LDES Tota	I	2,000		2,000
Storage Total		30,402		30,402

Resource Type FCDS EODS TOTAL **RESOLVE** Resource Name 79 Solano Geothermal Geothermal 79 48 Inyokern North Kramer Geothermal Geothermal 48 440 Southern Nevada Geothermal Geothermal 440 327 Northern Nevada Geothermal 327 Geothermal Greater Imperial Geothermal 900 900 Geothermal Solar 2,128 2,203 Greater LA Solar 75 Northern California Solar Solar 1.512 344 1,856 Solar 3,535 7,439 10,974 Southern PGAE Solar Solar 4,952 Tehachapi Solar 3,031 7,983 Solar Greater Kramer Solar 770 3,181 2,411 Solar Southern NV Eldorado Solar 1,320 4,196 5,516 Solar Riverside Solar 2.067 3.690 5,757 Arizona Solar Solar 800 1,831 2,631 Solar 653 Imperial Solar 125 528 Northern California Wind Wind 305 351 656 Solano Wind Wind 321 196 517 Kern Greater Carrizo Wind Wind 60 60 -Carrizo Wind Wind 287 287 -Central Valley North Los Banos Wind Wind 186 186 -North Victor Wind 100 Wind 100 -Tehachapi Wind Wind 281 281 -Southern Nevada Wind Wind 442 -442 Riverside Palm Springs Wind Wind 116 116 -Baja California Wind Wind 600 600 -Wyoming Wind 1,500 OOS Wind 1,500 -OOS Wind Idaho Wind 1,000 1,000 -New Mexico Wind OOS Wind 2.328 2,328 -SW Ext Tx Wind OOS Wind 610 610 Humboldt Bay Offshore Wind Offshore Wind 120 1.487 1,607 Morro Bay Offshore Wind Offshore Wind 3,100 3,100 56,196 **Renewable Resource Total** 26,842 29,353

California Public Utilities Commission

For more information: Jared.Ferguson@cpuc.ca.gov

