

CAISO ESDER 4 Stakeholder Process

Shaped Demand Response ELCC Initial Analysis

March 2, 2020

Arne Olson, Senior Partner Zachary Ming, Sr. Managing Consultant Roderick Go, Consultant John Stevens, Consultant Jessie Knapstein, Consultant Vignesh Venugopal, Consultant

+ 10:10 am – 10:15 am: Opening remarks

- +10:15 am 10:30 am: CA RECAP model & ELCC methodology overview
- +10:30 am 11:00 am: CAISO, PG&E, and SCE data overview
- + 11:00 am 11:30 am: Initial DR shape day matching algorithm
- + 11:30 am 12:00 pm: Initial Shaped DR ELCC values
- + 12:00 pm 1:00 pm: Lunch
- +1:00 pm 1:30 pm: Proposed ELCC allocation methodologies
- + 1:30 pm 3:00 pm: Q&A

- 1. Introduce ELCC as a useful tool for understanding the capacity value of DR programs in meeting system RA needs
 - ELCC has been used by the CPUC to quantify the capacity value for variable energy resources (wind and solar) as well as battery energy storage
 - We are not currently analyzing local RA
- 2. Use actual DR program data to demonstrate the ELCC concept
- 3. Introduce the question of how to allocate ELCC value between individual resources within a portfolio of DR programs
- 4. Solicit feedback on how to more effectively use available data or improve the analysis

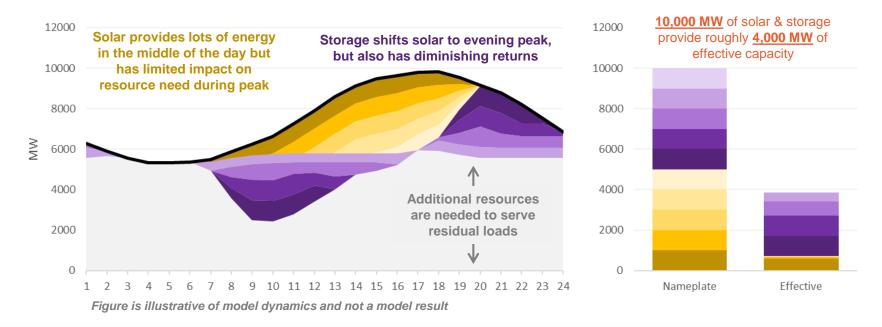
- 1. Using historical DR data, we find that both hourly DR forecasts/bids can vary significantly from monthly NQC ratings
 - E3 faced challenges using IOU DR data for initial analysis and welcomes collaboration to improve data quality
- 2. DR ELCC values can also vary significantly from monthly NQC ratings
 - For the purposes of this meeting, we aggregate DR program results from sub-LAP level up to LCA to compare against CPUC-published monthly NQCs

Energy+Environmental Economics

ELCC Methodology & RECAP Model Overview

+ NQC values for DR today is determined via CPUC's Load Impact Protocols (LIP) regression methodologies

- QC value is based on average expected (ex ante) load impact measured during specific measurement hours (1-6 PM in April-October; 4-9 PM otherwise)
- For QC purposes, use the 1-in-2 weather year LIP data
- + Current QC methodology and DR programs are designed with afternoon peak load as the driver of reliability events
 - We expect this to change as the system becomes more decarbonized


+ Effective Load Carrying Capability (ELCC) represents the equivalent <u>"perfect" capacity</u> that a resource provides in meeting the target reliability metric (e.g., 0.1 day/year LOLE)

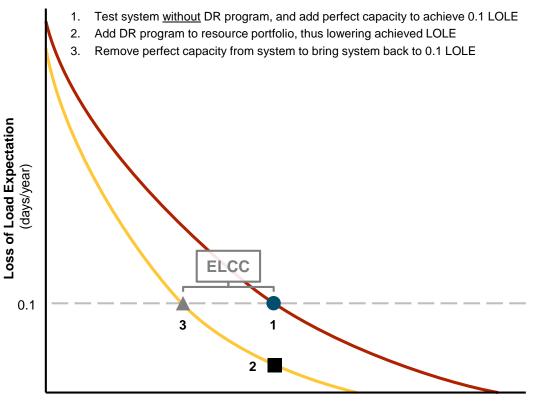
- ELCC can also be thought of as the incremental load that can be met throughout the year while maintaining the same target reliability metric
- + ELCC captures hourly and seasonal production variability to measure effects of low-probability "tail events" that drive the reliability planning
- + The CPUC Resource Adequacy Proceeding uses ELCC to quantify the capacity values of wind and solar resources¹
 - In the 2019-2020 IRP cycle, additional analysis on the ELCC of battery storage

¹ <u>https://www.cpuc.ca.gov/General.aspx?id=6442451972</u>

- + Effective load carrying capability (ELCC) is a probabilistic measure of a resource's contribution to system resource adequacy requirements
- + Marginal ELCC generally declines as a function of penetration
 - For the first increment of solar PV installed, production is largely coincident with peak demand
 - As penetration of solar PV increases, "net load peak" shifts toward evening, when solar PV is limited (or zero)

+ For the purposes of this analysis, we test against a 0.1 days/year Loss of Load Expectation (LOLE) reliability metric

- "Average number of days per year in which unserved energy occurs due to system demand exceeding available generating capacity"
- For the purposes of this study a loss-of-load event is considered when available resources
 drop below hourly load + 3% operating reserves

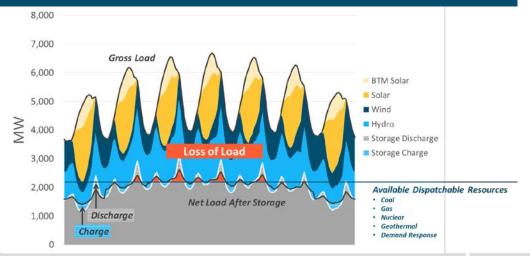

+ The LOLE metric is not tied to a specific weather year but measures the probabilistic reliability of the system across wide range of weather years

 Note that the 15% Planning Reserve Margin (PRM) used in California is not tied directly to a reliability metric

- + There are two ways to calculate ELCC that are used for different purposes:
 - Standalone ELCC
 Useful for procurement; the marginal ELCC of a DR program
 - Portfolio ELCC
 - Useful for <u>RA accounting</u>; the aggregate capacity credit (QC) of a portfolio of DR programs
- + We will come back to the Portfolio ELCC question at the end of the day

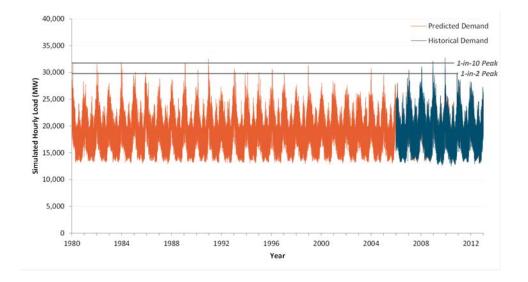
Illustration of ELCC Calculation Approach

Perfect Capacity Added to System (MW)


RECAP Overview

- + RECAP is a time-sequential, Monte Carlobased model that evaluates hourly resource availability over thousands of simulated years
 - In addition to summary statistics, RECAP produces hourly resource availability profiles for all simulated years
 - Time-sequential modeling allows for tracking of DR calls and storage state-of-charge
- + RECAP calculates system resource adequacy
- RECAP uses historical weather, load, wind, and solar correlations as foundation of Monte Carlo simulation
 - Additional uncertainty added via stochastic forced and maintenance outages for generation and transmission resources

Map of Recent E3 RECAP Projects


Example Loss of Load Calculation

RECAP Overview Developing California Loads & Resource Portfolio

Example of Neural Network Simulated Load Profile

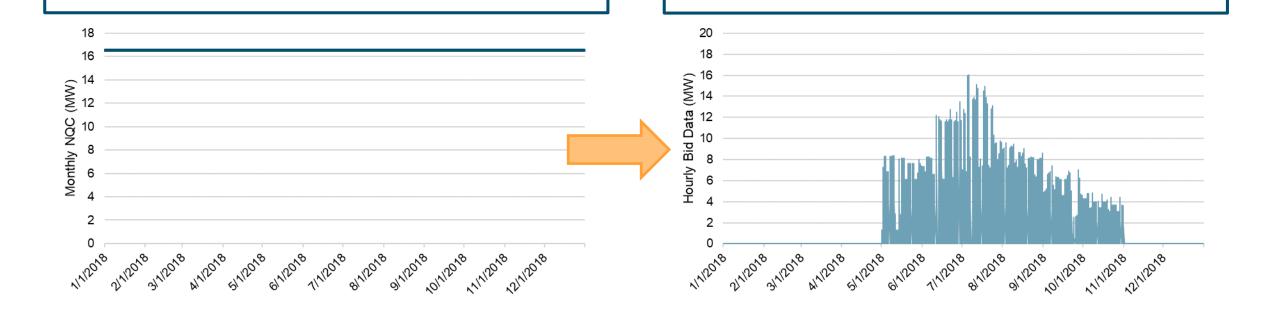
E3 updated a pre-existing, California-wide RECAP case¹ for this analysis

- Updated resource portfolio to reflect current CPUC-jurisdictional resource portfolio (based on 2019-2020 IRP data²)
- + E3 uses a neural network to develop a longer record of hourly loads that represent wide range of plausible weather conditions
 - Hourly load data is available for 5-10 years
 - Train neural network on 68 years of historical weather station data across California climate zones
- To test resource ELCC values, we scale the 1-in-2 gross peak load to historical levels

¹ Long-Run Resource Adequacy Under Deep Decarbonization Pathways for California

² CPUC IRP Events and Materials

RECAP Shed DR Functionality


Existing DR Functionality

+ Annual Pmax

- + Maximum hours per call
- + Maximum calls per month or year

Shaped DR Functionality

- + Hourly availability profile
- + Maximum hours per call
- + Maximum calls per month or year

Energy+Environmental Economics

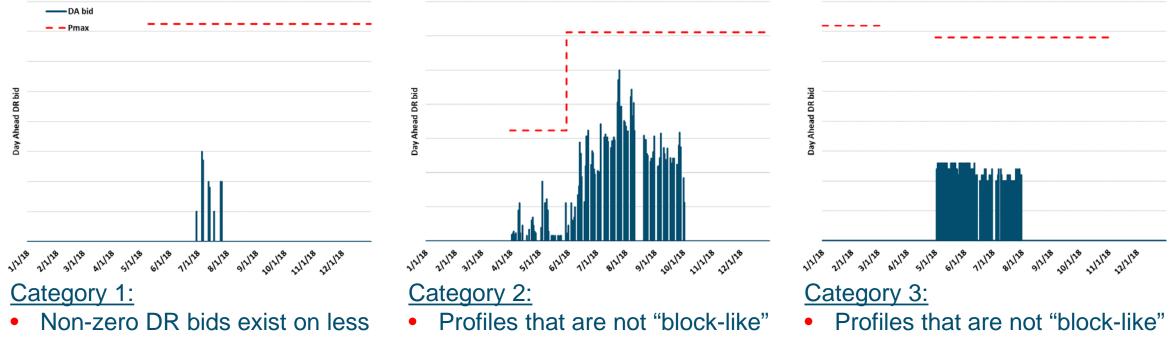
Overview of DR Data

+ Focused on "event-based" DR programs (as opposed to dynamic pricing)

- + Not considering DRAM resources
- + Current data:
 - 1. CAISO day-ahead market bid data for DR resources:
 - Categorized as PDR and RDRR
 - 2. PG&E DR forecasts* for 2018
 - BIP, CBP, and SAC
 - 3. SCE DR forecasts* for 2017
 - API, BIP, CBP, and SDP
- * DR forecasts inform the bids submitted by IOUs to CAISO

+ Hourly day-ahead bids for Reliability Demand Response Resources (RDRR) and Proxy Demand Resources (PDR) for PG&E and SCE

• Day ahead bids were provided by CAISO for 2017 (partial) and 2018


+ DR bid data aggregated to utility/DR program/sub-LAP combinations

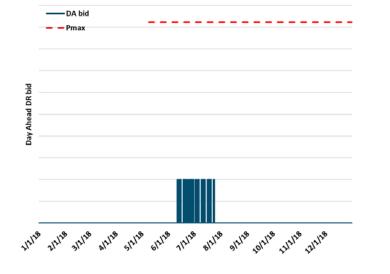
- Multiple bids exist for each utility/DR program/sub-LAP combination
- Modeled as 26 separate "DR programs" in RECAP

1. CAISO DR Day-Ahead Bid Data Characterizing the CAISO DR Bid Data (1/3)

- + The 214 hourly, day-ahead DR bid profiles received can be classified into 8 categories
- + Profiles in Category 1 were excluded from the analysis, while the rest were included

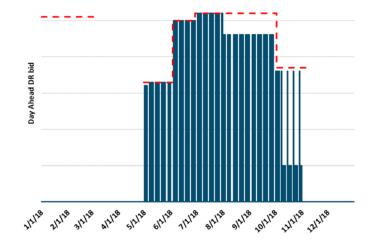
• 16% of all profiles

2% of all profiles

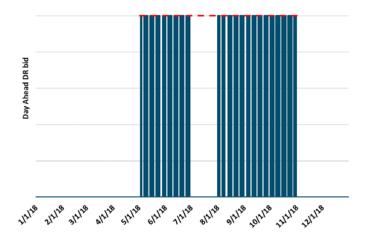

all through.

but significantly less than Pmax

than 30 days over 2018.

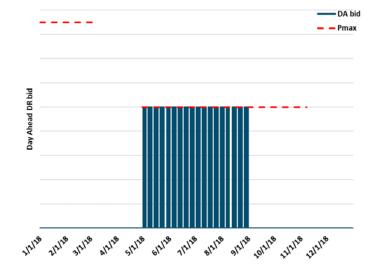

41% of all profiles

1. CAISO DR Day-Ahead Bid Data Characterizing the CAISO DR Bid Data (2/3)

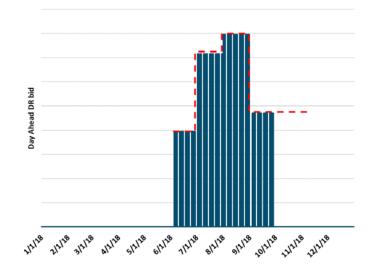

Category 4:

- Profile has "block-like" characteristic.
- Profile is significantly lower than Pmax all through.
- 2% of all profiles.

Category 5:


- Profile has "block-like" characteristic.
- Profile is less than Pmax in at least some hours.
- 27% of all profiles.

Category 6:


- Profile has "block-like" characteristic.
- Profile matches Pmax for the most part with no DR bid over significant periods of time in the middle.
- 3% of all profiles.

1. CAISO DR Day-Ahead Bid Data Characterizing the CAISO DR Bid Data (3/3)

Category 7:

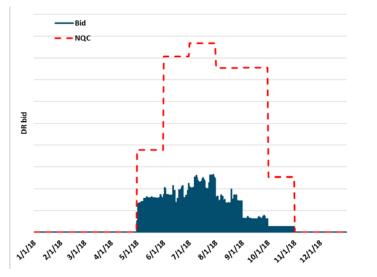
- Profile has "block-like" characteristic.
- Profile matches Pmax that stays constant all through the summer.
- 7% of all profiles.

Category 8:

- Profile has "block-like" characteristic.
- Profile matches Pmax that varies across the summer.
- <1% of all profiles.

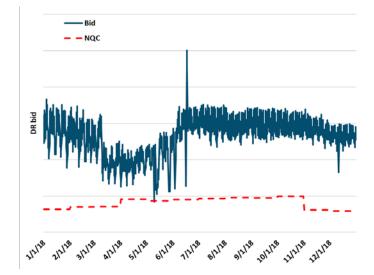
+ Hourly forecasts for Base Interruptible Program (BIP), Capacity Bidding Program (CBP) and SmartAC (SAC) Program

- Hourly forecasts are provided for the year 2018
- CBP and SAC are part of PDR while BIP is part of RDRR
- CBP and SAC combined match well with CAISO PDR data while BIP <u>does not</u> match well with CAISO RDRR data. RTM v/s DA discrepancy is the likely reason.

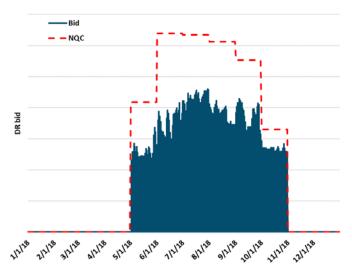

+ DR data aggregated to program/LCA level* for comparison to NQCs

• Modeled as 23 separate "DR programs" in RECAP

^{*} Comparative statistics for the DR programs can be found in Appendix B



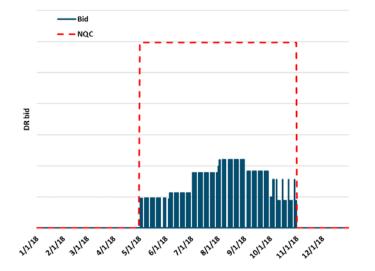
+ The DR bid data received from PG&E can be similarly classified, but now relative to the monthly NQC. Shapes from all these categories were included in the analysis.


Category 1:

- Profile is not "block-like".
- Profile is much less than NQC all through.

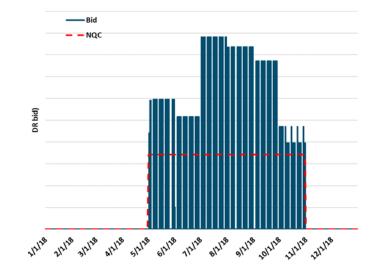
Category 2:

- Profile is not "block-like".
- Profile is larger than NQC all through.

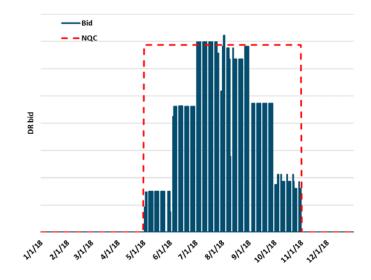


Category 3:

- Profile is not "block-like".
- Profile is more comparable to NQC relative to categories 1 and 2.



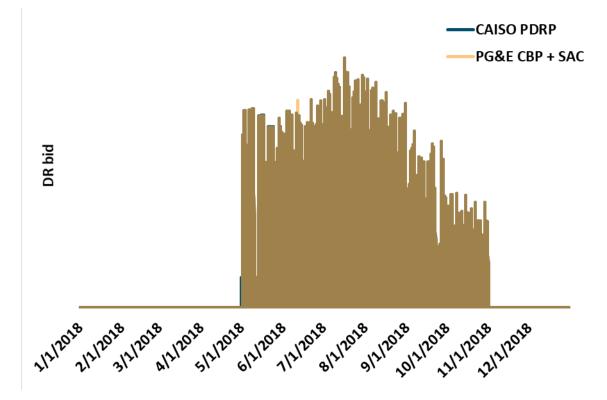
+ Shapes from all these categories were included in the analysis.


Category 4:

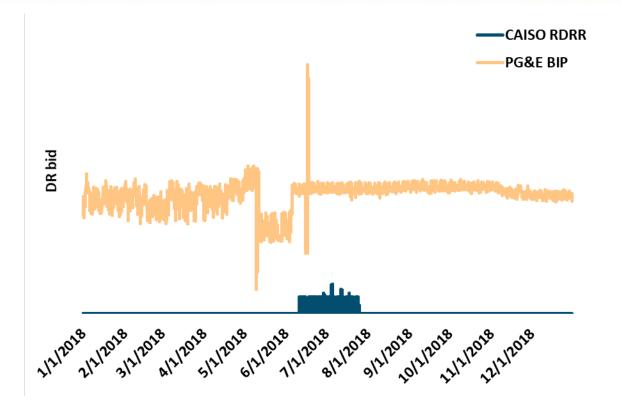
- Profile is "block-like".
- Profile is significantly less than NQC all through.

Category 5:

- Profile has "block-like" characteristic.
- Profile is larger than NQC in several hours.



Category 6:


- Profile is "block-like".
- Somewhere between categories 4 and 5

2. PG&E DR Forecast Data Example Comparison to CAISO Bid Data

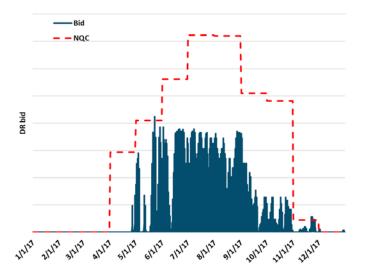
 Day ahead CAISO PDRP bids match well with sum of PG&E CBP and SAC forecasts as expected.

 Likely reason for mismatch is <u>Day ahead</u> CAISO RDRR bids being compared to <u>Real time</u> PG&E BIP forecasts.

 Hourly forecasts for Agricultural Pumping Interruptible (API) Program, Base Interruptible Program (BIP), Capacity Bidding Program (CBP) and Summer Discount Program (SDP)

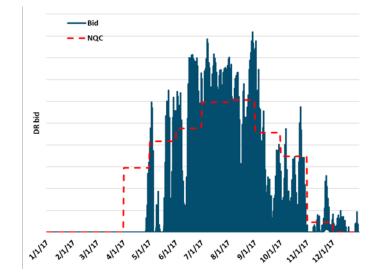
- Hourly forecasts are provided for the year 2017.
- API and BIP forecasts are provided for RTM, CBP for IFM, and SDP for both IFM and RTM*
- SDP forecasts for IFM match well with CAISO's RDRR data.

+ DR data aggregated to program/LCA level** for comparison to NQCs

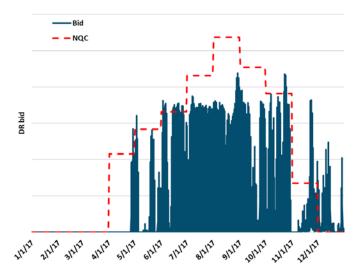

Modeled as 12 separate "DR resources" in RECAP

^{*} E3 uses union of RTM and IFM for SDP to reconstruct DR availability profile. DR forecasts provided did were not include RTM data if resource had been called in IFM.

^{**} Comparative statistics for the DR programs can be found in Appendix B



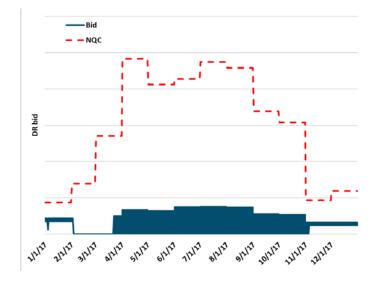
+ The DR bid data received from SCE can be similarly classified, but now relative to the monthly NQC. Shapes from all these categories were included in the analysis.


Category 1:

- Profile is not "block-like".
- Profile is less than NQC in most hours.

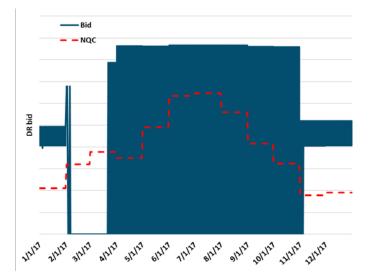
Category 2:

- Profile is not "block-like".
- Profile is larger than NQC In many hours.



Category 3:

- Profile is not "block-like".
- Somewhere between categories 1 and 2.



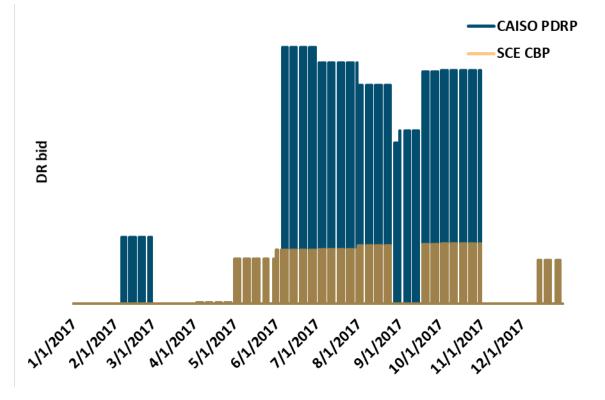
+ Shapes from all these categories were included in the analysis.


Category 4:

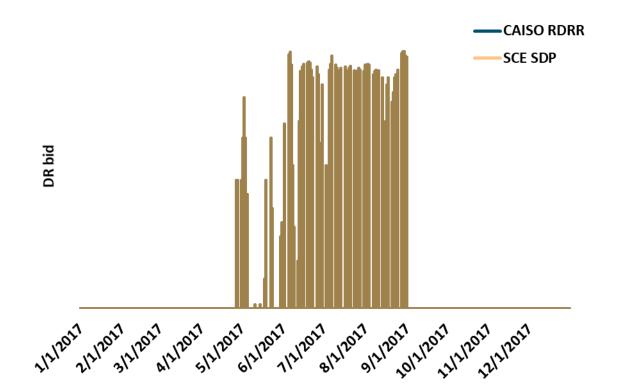
- Profile is "block-like".
- Profile is significantly less than NQC in all summer hours.

Category 5:

- Profile is "block-like".
- Profile is larger than NQC In many hours.



Category 6:


- Profile is "block-like".
- More comparable to NQC relative to categories 1 and 2.

3. SCE DR Forecast Data Example Comparison to CAISO Bid Data

- Day ahead CAISO PDRP bids do not match well with day ahead SCE CBP forecasts.
- + E3 was not provided with data for a now nonexistent program and another confidential program that may at least partially explain the mismatch.

- Day ahead CAISO RDRR bids match well with day ahead SCE SDP forecasts.
- + RTM forecasts are provided for API, BIP and SDP.
- + E3 uses RTM forecasts for API, BIP and a "union" of RTM and day-ahead for SDP in RECAP.

Energy+Environmental Economics

Energy+Environmental Economics

Extrapolating DR Data

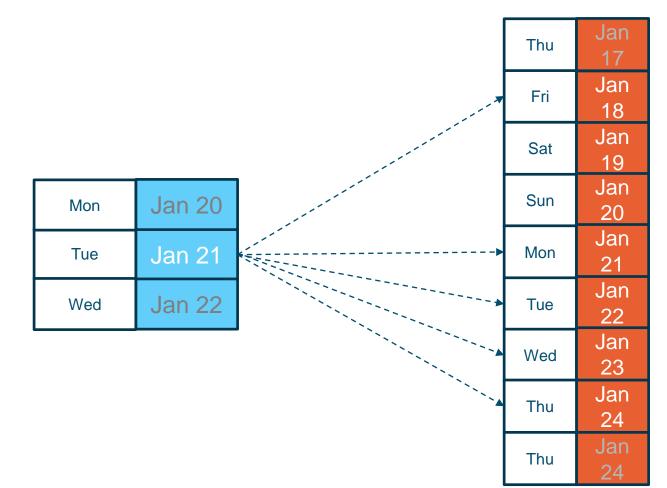
- 1. Given day ahead bids for **214 DR resources** (either PDR or RDRR) and one of 20 different sub-LAPs, on an hourly resolution for 2018
- 2. Aggregate hourly shapes into daily shapes (MWh/day)
 - 3. Initial filtering: exclude programs with fewer than 30 days of bids in 2018 (data quality)
 - 4. Run regression based on daily temperature to simulate daily shapes from 1950 to 2018

5. Use **day matching algorithm** to go from daily to hourly shapes from 1950-2018

6. Linearly scale predicted hourly shapes based on actual bid peak in 2018

7. Aggregate hourly shapes by type PDR/RDRR and by sub-LAP

8. Each aggregate shape modeled as a separate "shaped" DR resource in RECAP


- + E3 uses 68 years of historical daily weather station data to develop regressions for each climate zone
 - Weather station locations may differ from CZ representative cities due to data issues
- Geographies of sub-LAPs and climate zones do not align, so E3 selected most appropriate mapping based on available weather station data
- + Any suggestions for better mapping of sub-LAPs to climate zones?

Mapping Sub-LAPs to Climate Zones		
Sub-LAP	Climate Zone	Weather Station City
PGHB	1	Eureka
PGNC	1	Eureka
PGFG	2	Napa
PGNB	2	Napa
PGCC	3	San Francisco
PGP2	3	San Francisco
PGSF	3	San Francisco
PGSB	4	Moffett Field
PGZP	5	Santa Maria
PGSI	12	Sacramento
PGST	12	Sacramento
PGF1	13	Fresno
PGKN	13	Fresno
SCHD	14	Barstow

2. Day-Matching Algorithm for PG&E and SCE Data

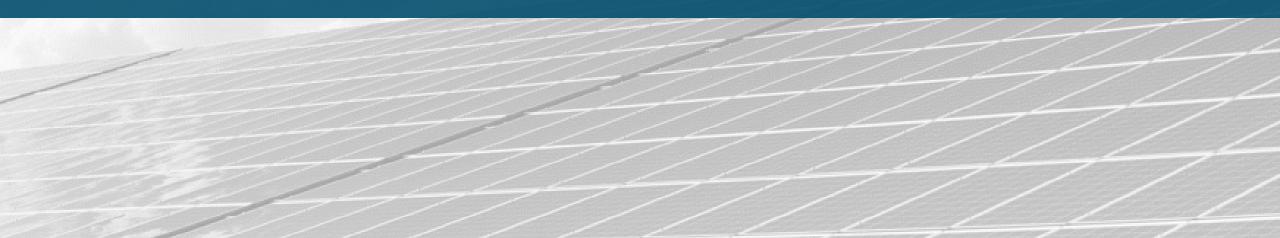
+ E3 chose to use a day-matching approach for PG&E and SCE DR data

- Initially attempted to use regression methodology used for CAISO bid data but found poor regression quality
- + For an individual DR program and a particular day in a simulated year, pick one day out of +/- 3 calendar days of the same type (workday/holiday) from the year of actuals data.
- + Suggestions for alternative approach?

+ Regression worked well for AC cycling programs but not others.

+ PG&E noted that:

- CBP forecasts are informed by aggregators' nominated MW
- BIP forecasts are based on the difference between the reference load and the firm service level. The reference load is informed by load on weather-similar non-event days.


+ SCE data file contained:

 A weather station mapping for SDP programs in each sub-LAP but none for API, BIP and CBP programs indicating regression may not be used for the latter set.

+ Any suggestions?

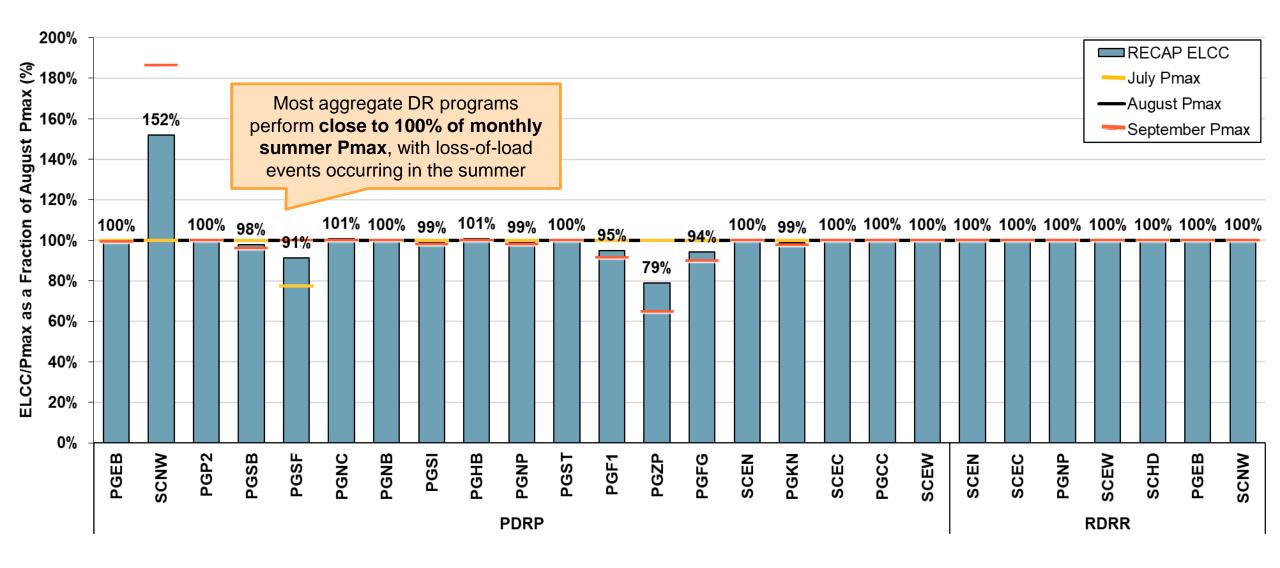
Initial Shaped DR Standalone ELCCs

- 1. Provide examples of how DR program standalone ELCC values are calculated using the available DR data
- 2. Compare the standalone ELCC values to the CPUC-published NQCs for corresponding 2017/2018 program years
 - For CAISO bid data, E3 worked with CAISO to estimate Pmax of each DR bid
 - DR program ELCCs are normalized to NQC or Pmax due to wide range of program sizes

a. Flat DR, Constrained Calls

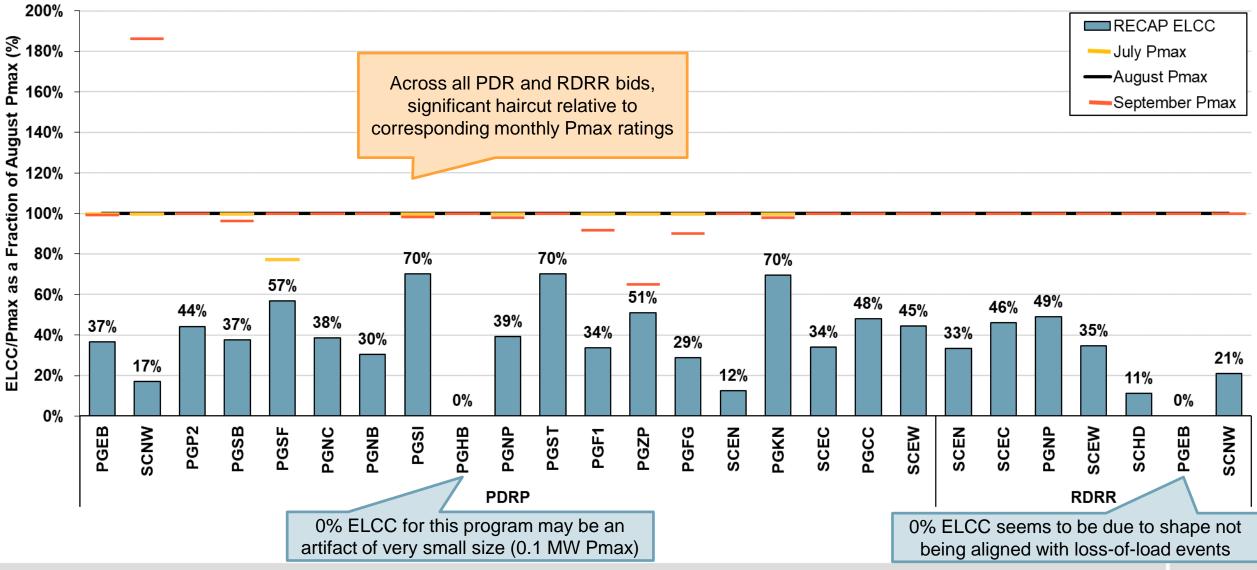
- DR programs rated at monthly NQC, constrained to program-defined # of calls
- We expect ELCC values in this set of results to be close to monthly NQCs

b. Shaped DR, Unconstrained Calls

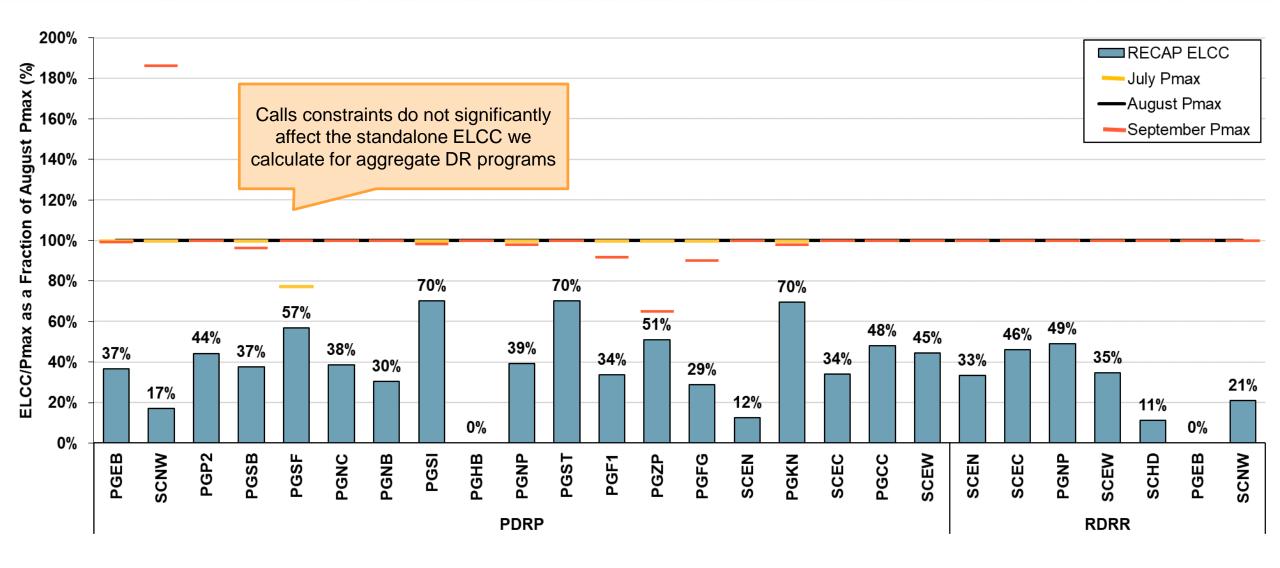

• DR program availability follows hourly profiles, no constraint on # of program calls

c. Shaped DR, Constrained Calls

• DR program availability follows hourly profiles, constrained to program-defined # of calls

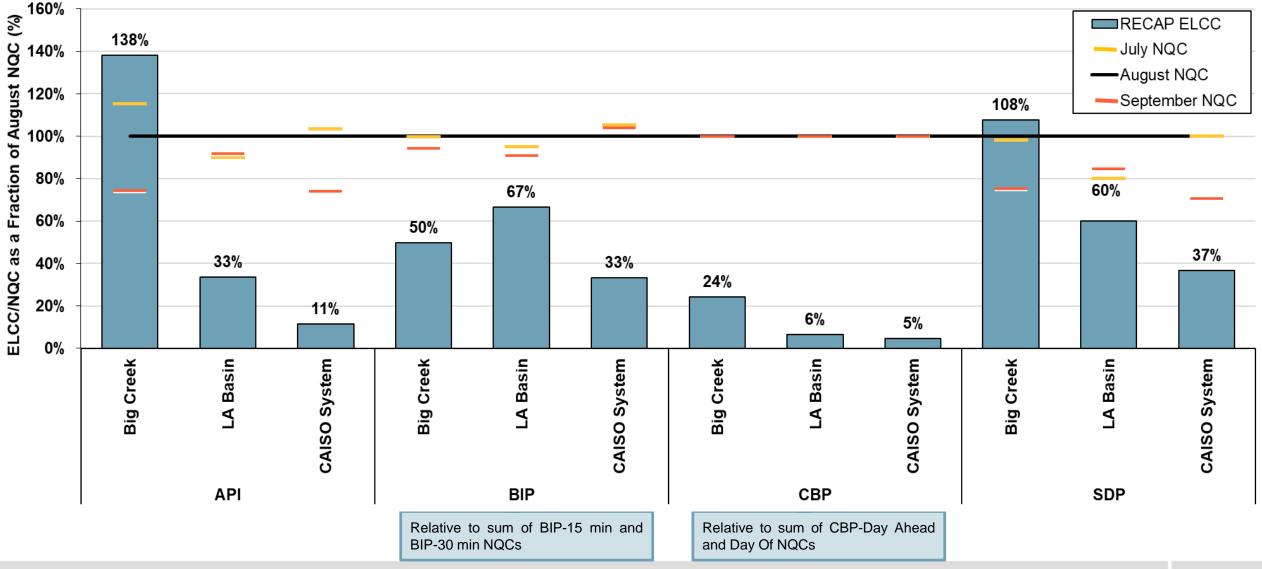


1.CAISO Bid Data a. Flat DR, Constrained Calls



1. CAISO Bid Datab. Shaped DR, Unconstrained Calls

1. CAISO Bid Data c. Shaped DR, Constrained Calls



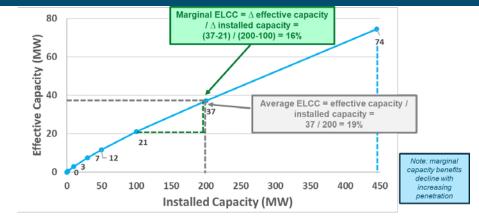
2. PG&E DR Programs Shaped DR, Constrained Calls

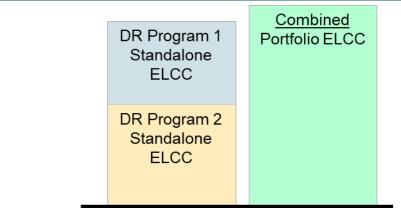
800% (%) RECAP ELCC 699% August NQC 700% July NQC -August NQC 600% September NQC 500% q Fraction 400% 349% 265% 300% 229% 219% a as 172% 200% 135% 137% ELCC/NQC 115% 69% 77% 96% 89% 79% 100% 67% **49%** 47% 47% 45% 38% 35% 22% 0% 0% Sierra Kern Sierra Sierra Kern Kern Humboldt Humboldt North Coast North Coast **CAISO System Greater Fresno** North Coast Stockton Bay Area **CAISO System Greater Fresno** Stockton Bay Area **CAISO System Greater Fresno** Bay Area Stockton BIP CBP SAC CAISO System is assumed to be the same as Outside LCA

3. SCE DR Programs Shaped DR, Constrained Calls

Energy+Environmental Economics

Portfolio ELCCs & ELCC Allocation




+ There are two ways to calculate ELCC that are used for different purposes:

- Standalone ELCC
 Useful for procurement: the marginal ELCC of a DR program
- Portfolio ELCC Useful for <u>RA accounting</u>: the aggregate capacity credit (QC) of a portfolio of DR programs
- + Due to diversity effect, portfolio ELCC likely differs from the sum of standalone ELCC
- + How do we fairly allocate the contribution of existing resources to the portfolio ELCC?
 - There are many options, but no standard or rigorous way to do this
 - One consideration: both marginal and portfolio ELCCs can and will change over time

Illustrative ELCC Relationship with Installed Capacity

Illustration of Standalone and Portfolio ELCC

+ As previously discussed, the sum of standalone ELCCs ≠ portfolio ELCC

• We call the discrepancy between these values the diversity effect

+ For both CAISO and IOU data, we find no/small diversity effect between DR programs

- Recall that CAISO bid data and IOU forecast data do not cover the same set of DR programs, so ELCC values are not comparable
- + We suspect small diversity effect is due to relatively small size of DR programs compared to remaining loss-of-load events in the system

CAISO DA Bid Data ELCCs	
+ Sum of August Pmax:	632 MW
+ Sum of standalone ELCCs:	245 MW
+ Portfolio ELCC:	245 MW

PG&E + SCE DR Forecast Data ELCCs								
+ Sum of August NQCs:	1,451 MW							
+ Sum of standalone ELCCs:	948 MW							
+ Portfolio ELCC:	952 MW							

Proposed Next Steps

1. Refine DR data request

- Unclear what (if any) effect bidding behavior had on reported DR forecasted
- Open to feedback from stakeholders on how to extrapolate one year of DR data across many years of historical weather

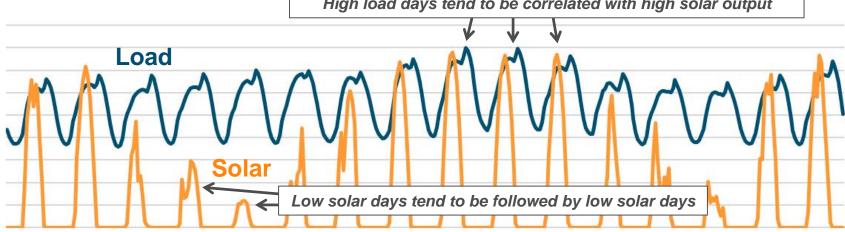
2. Refine ELCC results

• Potentially calculate monthly ELCCs to compare against monthly NQC values

3. Run DR ELCC sensitivities

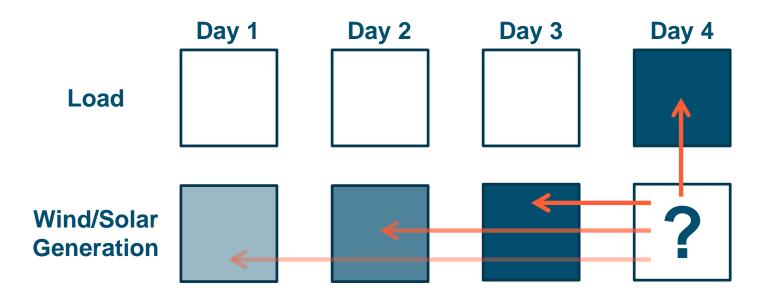
- Understand interaction of DR programs with other energy-limited resource (e.g., battery storage)
- Test how different call constraints or programs definitions may affect calculated ELCC values
- **4.** Demonstrate various ELCC allocation mechanisms

Appendix A: Methodology Details

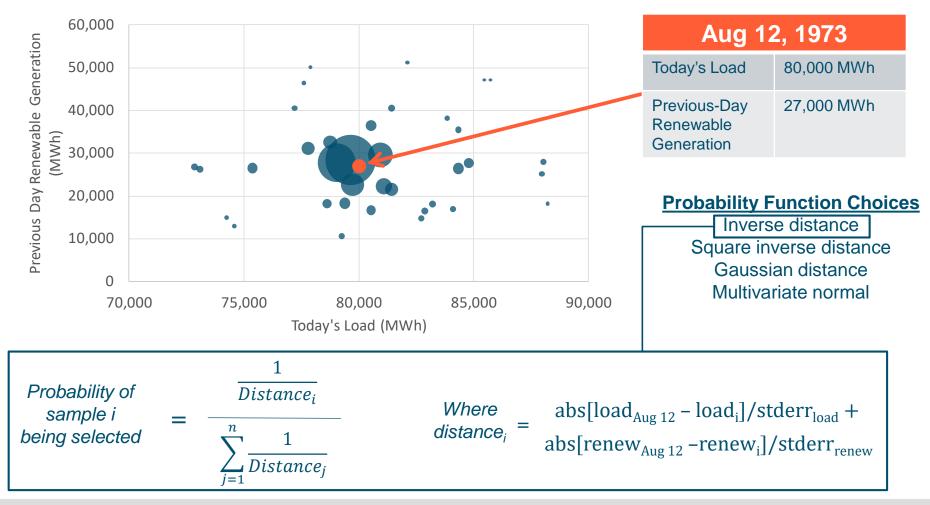


Review of Reliability Metrics

Metric Name	Units	Definition
Expected Unserved Energy (EUE)	MWh/year	Average total quantity of unserved energy (MWh) over a year due to system demand exceeding available generating capacity
Loss of Load Probability (LOLP)	%	Probability of system demand exceeding availability generating capacity during a given time period
Loss of Load Hours (LOLH)	hours/year	Average number of hours per year with loss of load due to system demand exceeding available generating capacity
Loss of Load Expectation (LOLE)	days/year	Average number of days per year in which unserved energy occurs due to system demand exceeding available generating capacity
Loss of Load Events (LOLEV)	events/years	Average number of loss of load events per year, of any duration or magnitude, due to system demand exceeding available generating capacity
Target Planning Reserve Margin (tPRM)	% 1-in-2 peak load	The planning reserve margin needed to achieve a given reliability metric (e.g., 1-day-in-10-years LOLE)
Effective Load-Carrying Capability (ELCC)	MW	Effective "perfect" capacity provided by energy-limited resources such as hydro, renewables, storage, and demand response
Residual Capacity Need	MW	Additional "perfect" capacity needed to achieve a given reliability metric


+ A wind/solar profile is stochastically chosen for each day in the timeline by taking into account correlations with load and the wind/solar output High load days tend to be correlated with high solar output

- + Each daily wind/solar profile in the historical sample set is assigned a 'similarity' rating to the day the wind/solar profile is being selected for
 - Similarity is a function of 1) total daily load and 2) previous day's renewable generation
- Daily wind/solar profile is probabilistically chosen based on the similarity rating such that each monte carlo draw will yield a different combination of load and renewables while still preserving the underlying relationships between them


- To select a daily wind/solar profile, the model analyzes the load on the day as well as the previous 3+ days of wind/solar generation (with the most recent days being weighted highest)
- + The model searches through the actual load and wind/solar historical record to find similar days and assigns each daily wind/solar profile a similarity rating to the day being predicted based on load and preceding days' wind/solar
- + The model probabilistically selects a daily wind/solar profile through monte carlo analysis using similarity ratings as probability weights

RECAP Methodology Predicting Renewable Output (pt. 2)

- Each blue dot represents a day in the historical sample
- Size of the blue dot represents the probability that the model chooses that day

- + Hourly dispatchable generator and transmission availability is calculated by stochastically introducing forced outages based on each generator's
 - Forced outage rate (FOR)
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)

+ Coincidence with load

• Positive correlation with load means higher capacity value

+ Existing quantity of other resources

- Same or similar resource types have diversity penalty
- Complementary resource types have diversity benefit

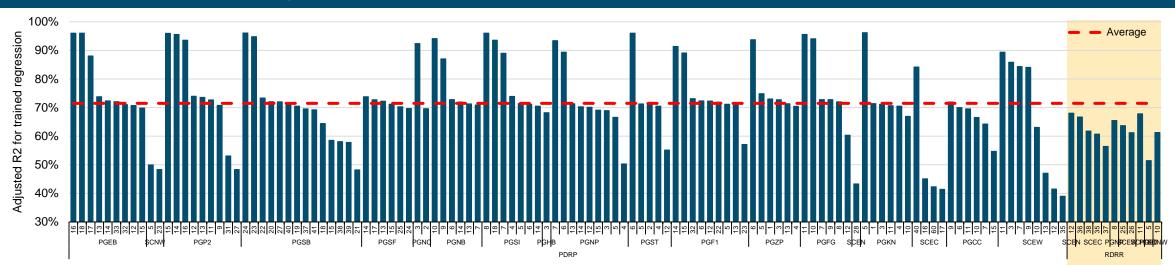
+ Production variability

• Statistically, the possibility of low production reduces the value of a resource

+ Reliability target

Effective capacity does not have linear relationship with system LOLE

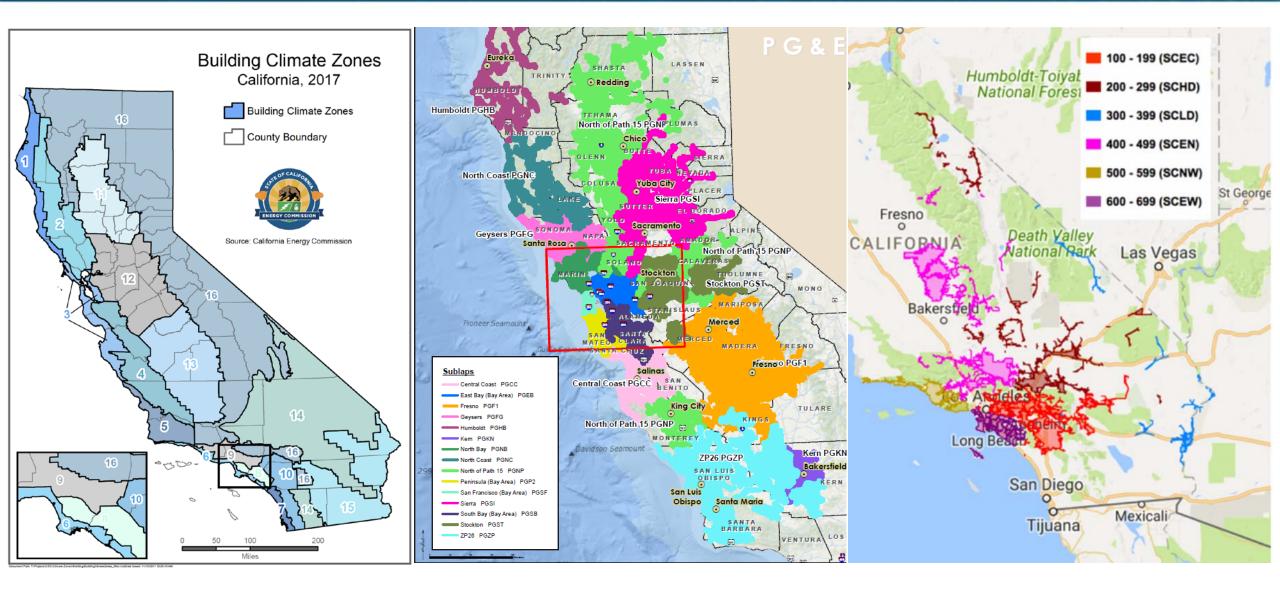
Appendix B: DR Program Data


CAISO Bid Data Daily DR Shape Regression Stats

Average performance of DR regression seems satisfactory

- We may be overfitting in some instances given limited data for training and absence of regularization.
- Regression fit for RDRR programs consistently worse than average

+ Caveats:


- Given that bid data is anonymized, we do not know whether underlying loads are best explained with our selected variables (daily temperature, month, day type)
- We assume the bids reflect total availability due to temperature
 - Unclear if bidding behavior of DR providers is influenced by factors such as # of calls remaining during the year

R2 Results for Each DR Program Bid

Climate zones and sub-LAPs for reference

Sub-LAPs vs. Local Capacity Areas

Sub-LAP	Sub-LAP (long form)	Local Capacity Area
PGCC	PG&E Central Coast	Bay Area
PGEB	PG&E East Bay	Bay Area
PGF1	PG&E Fresno	Greater Fresno
PGFG	PG&E Fulton-Geysers	North Coast/North Bay
PGHB	PG&E Humboldt	Humboldt
PGKN	PG&E Kern	Kern
PGNB	PG&E North Bay	North Coast/North Bay
PGNC	PG&E North Coast	North Coast/North Bay
PGNP	PG&E North of Path 15 - non local	CAISO System
PGP2	PG&E Peninsula	Bay Area
PGSB	PG&E South Bay	Bay Area
PGSF	PG&E San Francisco	Bay Area
PGSI	PG&E Sierra	Sierra
PGST	PG&E Stockton	Stockton
PGZP	PG&E ZP26 (between Path 15 and 26) -non local	CAISO System
SCEC	SCE Central	LA Basin
SCEN	SCE North (Big Creek)	Big Creek/Ventura
SCEW	SCE West	LA Basin
SCHD	SCE High Desert	CAISO System
SCLD	SCE Low Desert	CAISO System
SCNW	SCE North-West (Ventura)	Big Creek/Ventura
SDG1	SDG&E	San Diego/Imperial Valley
VEA	VEA	CAISO System

Assumptions on DR Program Characteristics

Source	DR Program	Event Duration (hours/call)	Max. Events per Month	Max. Events per Year	Comments on RECAP Implementation
CAISO	PDR	4	6		24 hrs/month is interpreted as 6 events/month
CAIGO	RDRR			30	15 events/season
	BIP	6	10		
PG&E	G&E CBP		5		30 hrs/month is interpreted as 5 events/month
	SAC	6		17	100 hrs/year is interpreted as 17 events/year
	ΑΡΙ	6	7		40 hours/month is interpreted as 7 events/month
SCE	BIP	6	10		60 hours/month is interpreted as 10 calls/month
JUL	СЕ		8		30 hours/month is interpreted as 8 calls/month
	SDP	6		30	180 hours/year is interpreted as 30 events/year

2018 PG&E DR Program Totals: Monthly NQC* (MW)

Program Name					BIP						CBP Day Of and Day Ahead							AC Cycling Residential									
Local Area	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA	Total IOU Service Area	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA	Total IOU Service Area	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA	Total IOU Service Area
July	16.9	18.9	5.4	36.8	6.3	5.7	8.9	186.9	285.8	6.4	1.3	0.2	2.7	0.5	0.6	1.4	6.3	19.2	20.0	11.5	0.1	5.8	4.0	8.0	8.6	18.3	76.3
August	17.4	16.4	5.6	37.4	6.2	5.7	10.2	196.9	295.7	6.4	1.3	0.2	2.7	0.5	0.6	1.4	6.3	19.2	19.0	11.0	0.2	5.6	3.4	7.5	8.2	17.3	72.2
September	17.3	13.7	5.5	37.1	6.0	5.5	9.9	187.4	282.3	6.4	1.3	0.2	2.7	0.5	0.6	1.4	6.3	19.2	19.1	10.0	0.1	5.0	3.4	6.8	7.5	15.9	67.9

2018 PG&E DR Shape Average Afternoon (1-6 PM) Availability (MW)

Program Name					BIP				CBP Day Of and Day Ahead								A	C Cyc	ling Res	sidentia	ıl			
Local Area	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA	Greater Bay Area	Greater Fresno Area	Humboldt	Kern	Northern Coast	Sierra	Stockton	Outside LCA
July	63.3	16.4	3.2	48.9	5.3	12.1	13.5	72.4	6.4	5.8	0.0	0.6	0.8	1.1	0.6	4.4	7.3	10.0		3.3	0.5	7.2	3.6	7.0
August	61.1	16.1	3.1	49.0	5.2	12.5	14.0	73.9	5.3	7.0	0.0	0.8	0.7	1.2	0.5	4.8	7.6	10.2		3.0	0.4	6.9	3.2	6.2
September	61.3	14.9	2.8	48.4	4.8	12.6	13.6	72.0	7.0	5.2	0.0	0.6	0.6	1.0	0.6	3.0	4.7	8.0		3.0	0.2	5.5	2.8	4.7

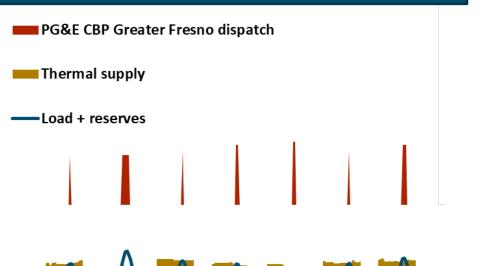
* Average Hourly Impacts (MW/hour) from 1pm to 6pm in Apr.-Oct. and from 4pm to 9pm Jan.- Mar. and Nov.-Dec. If Simultaneous Events Are Called on Monthly Peak Load Days Under 1-in-2 Weather Year Conditions, Before Adjusting for Avoided Line Losses

Energy+Environmental Economics

2017 SCE DR Program Totals: Monthly NQCs*

Program Name	Base	Interruptib 15 min 8	le Program & 30 min	(BIP)	Agricult	ural and Pu (Al		rruptible	Capacity Bidding Program (CBP) Day Of & Day Ahead			AC Cycling Residential and Commercial					
Local Area	LA Basin	Big Creek/Ventura	Outside LCA	Total IOU Service Area	LA Basin	Big Creek/Ventura	Outside LCA	Total IOU Service Area	LA Basin	Big Creek/Ventura	Outside LCA	Total IOU Service Area	LA Basin	Big Creek/Ventura	Outside LCA	Total IOU Service Area	
July	488.5	75.9	73.7	638.0	14.4	30.1	22.1	66.6	22.7	5.2	3.1	31.0	200.5	27.7	33.6	261.7	
August	512.9	76.1	69.9	658.9	16.0	26.0	21.3	63.3	22.7	5.2	3.1	31.0	249.5	28.2	33.5	311.2	
September	466.3	71.7	72.6	610.6	14.7	19.3	15.7	49.8	22.7	5.2	3.1	31.0	211.2	21.2	23.7	256.1	

2017 SCE DR Shape Average Afternoon (1-6 PM) Availability (MW)


Program Name	Base	Interruptibl 15 min 8		(BIP)	Agricult	ural and Pu (Al		rruptible	Capacity Bidding Program (CBP) Day Of & Day Ahead			AC Cycling Residential and Commercial				
Local Area	LA Basin	Big Creek/Ventura	Outside LCA		LA Basin	Big Creek/Ventura	Outside LCA		LA Basin	Big Creek/Ventura	Outside LCA		LA Basin	Big Creek/Ventura	Outside LCA	
July	370.2	42.9	24.8		7.2	43.1	3.2		1.6	0.9	0.1		161.0	33.7	14.4	
August	355.5	41.0	24.2		6.5	43.1	3.0		1.7	1.0	0.1		164.4	30.8	12.7	
September	350.7	41.3	25.0		5.0	37.2	2.3		0.9	0.9	0.1		127.4	17.8	6.3	

* Average Hourly Impacts (MW/hour) from 1pm to 6pm in Apr.-Oct. and from 4pm to 9pm Jan.- Mar. and Nov.-Dec. If Simultaneous Events Are Called on Monthly Peak Load Days Under 1-in-2 Weather Year Conditions, Before Adjusting for Avoided Line Losses

Energy+Environmental Economics

Example PG&E CBP Greater Fresno Dispatch

DR dispatch during loss of load events for a system that meets the 0.1 LOLE reliability standard

\int	\bigwedge	ſ	\mathcal{A}	ſ	Ń	\mathcal{A}
9127112963	A11971 112	3 1990 8 1	611994 811	1 ¹⁹⁹⁸ 11 ²⁰	412006 91	112017

	CBP Greater Fresno Area									
	Jul 2018	Aug 2018	Sep 2018							
NQC as per LIP	1.25	1.25	1.25							
Median PG&E forecast	8.9	9.7	8.2							