EDAM GHG Accounting and Costs: Additional Resource-Specific Option

Kallie Wells – Gridwell Consulting <u>Kwells@gridwell.com</u> 916.306.1743

March 2022

About Gridwell Consulting

- Women-owned economics and energy consulting firm – <u>www.gridwell.com</u>
 - Educate, model, advise, and advocate
 - Experts in energy and ancillary service markets, resource adequacy, interconnection, and storage optimization and modeling for RFOs, due diligence, and bid strategy
- Kallie Wells, co-founder and Senior Partner
 - Designed CAISO's Opportunity Cost methodology for uselimited resources
 - Has developed GridSolver, a resource valuation and dispatch optimization model to assess storage and storage + renewable resources in CAISO market
 - Represent WPTF at the CAISO, full client list on website

About WPTF

The Western Power Trading Forum (WPTF) is a broad-based industry organization of companies that do business and advocate for competitive market rules throughout the Western Interconnection.

Outline

- Topic 1: Recap of GHG EDAM Efforts
- Topic 2: Additional Resource Specific Approach
- Topic 3: Case Studies
- Topic 4: Key Take Aways and Next Steps

Topic 1 OVERVIEW OF CURRENT EDAM GHG

GHG Working Group Challenge

- EDAM GHG Working Group has recognized from the beginning that there are two competing objectives in this effort
 - 1. Centralized optimal dispatch that results in least cost solution to serve load
 - 2. Accurate accounting of emissions to serve load in GHG regulated areas
- "There is no perfect solution"
- This group is tasked with the challenge of having to weigh pros and cons of all the options on the table
- Working group should evaluate the trade offs between all viable options

EDAM Working Group Options

- Approaches have been discussed thus far
 - Zonal approach
 - Resource Specific V2.0 approach (RS V2.0)
- 3rd option Resource Specific V2.5
- RS V2.5 limits deeming to incremental dispatch above a counterfactual baseline schedule
- Addresses key concern that RS V2.0 deems resources even if not incrementally dispatched above baseline
- Like all approaches, there are pros and cons
- WPTF asks that all three options be evaluated <u>and</u> <u>tested</u> prior to CAISO finalizing the direction in the straw proposal

Resource Specific V2.0 "deeming"

Resource Specific V2.5 "deeming"

Decision making

- WPTF offers Resource Specific V2.5 as an additional approach for consideration and will walk through details in this deck
- Option warrants additional discussion and testing
- Preliminary testing by Gridwell has shown it to address primary concerns raised
- The additional constraint added may impact pricing
- WPTF does not have a preferred approach because without testing within the CAISO market simulation it is impossible to know the pros and cons of the different approaches in advance

Topic 2

RESOURCE SPECIFIC APPROACH VERSION 2.5

Overview of Resource Specific V2.5

- This option is the Resource Specific Approach
 V2.0 with two key differences
 - Include internal transmission in baseline schedule
 - Limit deeming to incremental dispatch above baseline schedule
- Resources are identified as either being within a GHG area or outside a GHG area
- Resources submit hourly GHG bids (MW, \$/MWh) if willing to be deemed delivered
- Deemed MWs limited by incremental dispatch above baseline schedule and GHG bid MW
- Requires two runs Baseline and IFM Optimization

Baseline Schedule Run

- Baseline schedule run is an optimization run done prior to IFM to determine the baseline schedule of each resource without EDAM transfers
 - Reflects the optimal use of each resource as if dispatched to serve its own local load in non-GHG area
- Baseline schedule should closely mimic IFM optimization without EDAM transfers
 - Could use proposed RSE Optimization with energy bids and internal transmission constraints
- Baseline schedules become an input into IFM optimization

Deeming MWs in IFM Optimization

- Add a constraint in the IFM that limits "deemed" MWs to incremental dispatch above baseline schedule
- Dispatch Deemed MWs Baseline MWs >= 0
- IFM will then dynamically determine the MWs from resources in a non-GHG area that were dispatched up to serve load in GHG area
- Deemed MWs is limited by the minimum of:
- Dispatch minus baseline schedule
- Bid GHG MWs
- Resources deemed delivered will receive GHG marginal price for each MW deemed

Resource Specific Deeming Example

internal and external emitting resources on an equal playing field

Other Features

- Expandable to multiple GHG areas that are not linked
- All resources would bid GHG cost separate from energy bids
- Resources that are contracted to serve load in a GHG region can be modeled as if in the GHG region
- Could consider including a constraint or participation rule that better aligns deeming with ability to be delivered

Topic 3 CASE STUDIES

Summary of Case Studies

- Developed an optimization model with two zones
 - A GHG and non-GHG zone with different load levels
- Each zone has a combination of emitting and nonemitting resources
- Each resource has different energy and carbon cost bids
- Case 1: "Deemed" MWs with Price Separation
- Case 2: No "Deemed" MWs without Price Separation
- Case 3: No "Deemed" MWs with Price Separation
- Case 4: Edge case to highlight non-convexity concern

Case Study 1-3 Assumptions

GHG Area	Resource	Туре	Max Output	GHG Bid MW	Energy Bid	Carbon Bid	All-in Bid
GHG (Int)	G1	Gas	300	N/A	\$35.00	\$11.13	\$46.13
	G2	Gas	300		\$35.50	\$11.29	\$46.79
	G3	Gas	300		\$36.50	\$11.61	\$48.11
	G4	Gas	400		\$50.00	\$15.90	\$65.90
	H1	Hydro	300		\$18.00	\$0.00	\$18.00
	RE1	Renewable	200		\$0.00	\$0.00	\$0.00
Non-GHG (Ext)	G5	Gas	300	300	\$36.00	\$11.45	\$47.45
	G6	Gas	200	200	\$37.50	\$11.93	\$49.43
	H2	Hydro	600	600	\$10.00	\$0.00	\$10.00
	C2	Coal	300	300	\$20.00	\$30.00	\$50.00

Case Study 1: Deemed MWs with Price Separation

Case Study 2: No Deemed MWs without Price Separation

Case Study 3: No Deemed MWs with Price Separation

Non-Convexity Case with RS V2.5

- Limiting the "deemed" MWs to incremental dispatch above the baseline schedule introduces non-convexity cases
 - This is not a new issue and likely an edge case in EDAM
- Can impact price formation
- Probability of the edge case occurring should be considered
- Following case study shows how the energy price can be lower than the energy bid of a dispatched resource
 - Uses different cost and resource assumptions than prior case studies

Case Study 4: Non-Convexity Case

Note: In this case, the baseline schedule was forced to be a suboptimal schedule

Metric	Value of Transfer Run			
LMP Internal (\$/MWh)	\$46.13			
LMP External (\$/MWh)	\$10.00			
Total Cost (\$)	\$21,371			
Net Transfers (MW)	100			
Total Emissions	189			
Emissions to Serve CA	112			

- Cheaper to dispatch external gas up to be deemed delivered
- Total revenues received (energy plus GHG revenues) always cover costs
- Probability of edge case reduced the closer baseline run is to IFM
- Similar pricing outcomes occur today given the other constraints in the market

Topic 4 Observations and next steps

Key Takeaways and Next Steps

- Limiting deeming to incremental dispatch above baseline schedule is feasible to enforce in market
 - RS V2.5 is worth at least consideration by stakeholders
- Addresses price formation and secondary dispatch/leakage concerns with current EIM approach
- Compatible with additional constraints as proposed in RS V2.0 if found preferable by stakeholders
- Critical to test each option on the table to make educated trade off decisions
 - Want to assess probability of edge cases occurring

Contact Information

Carrie Bentley <u>Cbentley@gridwell.com</u> 916.306.0754

Kallie Wells <u>Kwells@gridwell.com</u> 916.306.1743

www.gridwell.com

